Faster Low-rank Approximation using Adaptive Gap-based Preconditioning

نویسندگان

  • Alon Gonen
  • Shai Shalev-Shwartz
چکیده

We propose a method for rank k approximation to a given input matrix X P R which runs in time

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divide and Conquer Low-rank Preconditioning Techniques

This paper presents a preconditioning method based on a recursive multilevel lowrank approximation approach. The basic idea is to recursively divide the problem into two and apply a low-rank approximation to a matrix obtained from the Sherman-Morrison formula. The low-rank approximation may be computed by the partial Singular Value Decomposition (SVD) or it can be approximated by the Lanczos bi...

متن کامل

Faster Eigenvector Computation via Shift-and-Invert Preconditioning

We give faster algorithms and improved sample complexities for the fundamental problem of estimating the top eigenvector. Given an explicit matrix A ∈ Rn×d, we show how to compute an approximate top eigenvector of A>A in time Õ ([ nnz(A) + d sr(A) gap2 ] · log 1/ ) . Here nnz(A) is the number of nonzeros in A, sr(A) is the stable rank, and gap is the relative eigengap. We also consider an onlin...

متن کامل

Low-rank correction methods for algebraic domain decomposition preconditioners

This paper presents a parallel preconditioning method for distributed sparse linear systems, based on an approximate inverse of the original matrix, that adopts a general framework of distributed sparse matrices and exploits the domain decomposition method and low-rank corrections. The domain decomposition approach decouples the matrix and once inverted, a low-rank approximation is applied by e...

متن کامل

Hybrid cross approximation of integral operators

The efficient treatment of dense matrices arising, e.g., from the finite element discretisation of integral operators requires special compression techniques. In this article we use the H-matrix representation that approximates the dense stiffness matrix in admissible blocks (corresponding to subdomains where the underlying kernel function is smooth) by low-rank matrices. The low-rank matrices ...

متن کامل

Hierarchical low-rank approximation of tensors by successive rank one corrections for preconditioning and solving high dimensional linear systems

We propose an algorithm for preconditioning and solving high dimensional linear systems of equations in tensor format. The algorithm computes an approximation of a tensor in hierarchical Tucker format in a subspace constructed from successive rank one corrections. The algorithm can be applied for the approximation of a solution or of the inverse of an operator. In the latter case, properties su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1607.02925  شماره 

صفحات  -

تاریخ انتشار 2016